SYNTHESIS OF CYANOAMINOTHIOPHENES WITH

ACTIVE FUCTIONAL GROUPS

L. G. Sharanina and S. N. Baranov

UDC 547,733'853.7.07

2-Amino-3-cyano-4-N-arylcarbamoyl-5-methylthiophenes were obtained by condensation of arylamides of acetoacetic acid with sulfur and malononitrile in absolute alcohol. 4-Amino-6-N-arylcarbamoyl-5-methylthieno[2,3-d]pyrimidines are formed by reaction of the condensation products with formamide.

2-Aminothiophenes containing alkyl or aryl groups in the 3,4 positions were obtained by Knoevenagel condensation of carbonyl compounds with sulfur and nitriles containing an active methylene group [1, 2].

We have carried out a condensation of the Knoevenagel type using anilides of acetoacetic acid, malononitrile, and sulfur in ethanol. One might have expected the formation of 2-amino-3-cyanothiophenes of the I or II type:

Ar HN

$$CN$$
 CH_3
 CO
 S
 CH_2
 CH_3
 CO
 CH_3
 CH_3
 CO
 CH_3
 CH_3

We have shown that the reaction leads primarily to derivatives of the I type (Table 1). A small amount of 3-cyano-4-methyl-5-anilino-2-pyridone was isolated as a side product; the structure of the side product was confirmed by alternative synthesis by a known method for the preparation of pyridone [3] from acetoacetic acid anilide and malononitrile in dimethylformamide in the presence of an organic base.

The IR spectra of 2-amino-3-cyanothiophenes I, contain four absorption bands of free and bonded amino groups at 3200-3500 cm⁻¹ [4, 5]. The absorption band at 2220 cm⁻¹ is affiliated with the stretching vibrations of a nitrile group bonded to an aromatic heterocycle [4, 5]. The intense broad absorption band with two maxima at 1610 and 1645 and a shoulder at 1660 cm⁻¹ apparently corresponds to the deformation vibrations of the aromatic rings, the stretching vibrations of the oxo group, and the deformation vibrations of the amino group [4, 5].

The presence of vicinal functional amino and nitrile groups made it possible to carry out the reaction of substituted thiophene with formamide. 4-Aminothieno[2,3-d]pyrimidines III (Table 2) were isolated in quantitative yields. On the basis of the available data [2, 6, 7], the following scheme can be assumed for the reaction:

To choose between structures of the I or II types, we carried out the hydrolysis of both the 2-amino-thiophene derivatives and the 4-aminothieno [2,3-d]pyrimidines. The hydrolysis of compounds of the I type by refluxing in alcoholic alkali apparently proceeds with cleavage of the thiophene ring, and the reaction

Donetsk State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 196-198, February, 1974. Original article submitted October 2, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. 2-Amino-3-cyano-4-N-arylcarbamoyl-5-methylthiophenes (Ia-d)

Com-	Ar		Empirical for- mula	Found, %				Calc., %				ield,
				С	Н	N	s	С	Н	N	s	Y ie
Ia	C_6H_5	199	C ₁₃ H ₁₁ N ₃ OS	60,4 60,6		16,2 16,5	12,4 12,3	60,7	4,3	16,3	12,5	70
Ib	4-CH₃C ₆ H₄	232	C ₁₄ H ₁₃ N ₃ OS	62,0 61,8		15,3 15,6	11,9 11,7	62,0	4,8	15,5	11,8	63
Ic	4-ClC ₆ H₄	226	C ₁₃ H ₁₀ ClN ₃ OS ^a	53,5 53,4		14,0 14,3	11,0 10,8	53,5	3,5	14,4	11,0	60
Id	2,5-Cl ₂ C ₆ H ₃	312	C ₁₃ H ₉ Cl ₂ N ₃ OS ^b	47,5 47,6		12,6 12,7	9,7 9,8	47,9	2,8	12,9	9,8	68

aFound, %: Cl 12.3, 12.1. Calculated, %: Cl 12.2.

TABLE 2. 4-Amino-5-N-arylcarbamoyl-6-methylthieno[2,3-d]-pyrimidines (IIIa-d)

Com- pound	Ar	Mp.	Empirical for- mula		Four	ıd, %		Calc., %			
				С	Н	N	s	С	н	N	S
IIIa	C ₆ H ₅	314	C ₁₄ H ₁₂ N ₄ OS	59,3 59,1	4,5 4,5	19,9 20,0	10,9 11,1	59,1	4,3	19,7	11,3
Шь	4-CH₃C ₆ H₄	315	C ₁₅ H ₁₄ N ₄ OS	60,7 60,2	5,1 4,9	18,5 18,5	10,4 10,6	60,4	4,7	18,8	10,7
IIIc	4-CIC ₆ H ₄	316	C ₁₄ H ₁₁ CIN ₄ OS ^a	52,9 52,3	3,3 3,4	17,4 17,7	9,9 9,8	52,7	3,5	17,6	10,0
III d	2,5-Cl ₂ C ₆ H ₃	345	C ₁₄ H ₁₀ Cl ₂ N ₄ OS ^b	47,5 47,3	3,0 2,7	15,4 15,7	8,9 8,8	47,6	2,9	15,9	9,1

aFound, %: Cl 11.0, 11.0. Calculated, %: Cl 11.1.

products could not be identified. Hydrolysis in acetic acid leads to 2-acetamido-3-cyano-4-carboxy-5-methylthiophene (IV); the nitrile group is not involved in this reaction, in accordance with the data in [8].

4-Aminothieno[2,3-d]pyrimidine IIIa is hydrolyzed to 4-amino-5-carboxy-6-methylthieno[2,3-d]-pyrimidine (V) in an alcohol solution of potassium hydroxide.

Thus the presence of an N-arylcarbamoyl grouping in the products of condensation of acetoacetic acid anilides with malononitrile and sulfur is confirmed; this is evidence in favor of structures of the I and III type for the products.

EXPERIMENTAL

The individualities of all of the synthesized compounds were confirmed by thin-layer chromatography (TLC) on a fixed layer of silica gel-gypsum in chloroform-acetone-carbon tetrachloride (3:3:5). The IR spectra of KBr pellets of the compounds were recorded.

2-Amino-3-cyano-4-N-phenylcarbamoyl-5-methylthiophene (Ia, Table 1). A 3.6 g (0.02 mole) sample of acetoacetic acid anilide and 0.8 g (0.025 g-atom) of sulfur were dissolved in 10 ml of anhydrous ethanol while heating on a water bath, after which the solution was cooled to room temperature, and 1.32 g (0.02 mole) of malononitrile and 2 ml of morpholine were added. The reaction mixture began to darken and warmed up to 60-65°; it was heated at 60° for 30 min. It was then cooled to room temperature, during which a brick-red precipitate formed; the alcohol solution was diluted with a twofold to threefold amount of water for complete precipitation. The precipitate was removed by filtration and washed with ethanol. Crystal-lization from ethanol (chloroform) gave a small amount (0.1-0.2 g) of insoluble 3-cyano-4-methyl-6-phenyl-amino-2-pyridone with mp 266°. Dilution of the alcohol solution with water gave 3.6 (70%) of Ia.

Thiophene derivatives Ib-d (Table 1) were similarly obtained.

4-Amino-5-N-phenylcarbamoyl-6-methylthieno [2,3-d]pyrimidine (IIIa, Table 2). A mixture of 0.73 g (0.28 mole) of Ia and 5 ml of formamide was heated at 190° on an oil bath for 15 min. It was then cooled,

bFound, %: Cl 21.7, 21.5. Calculated, %: Cl 21.4.

bFound, %: Cl 19.8, 20.1. Calculated, %: Cl 20.1.

and IIIa was crystallized to give 0.8 g (about 100%) of shiny colorless plates with mp 314° (from dioxane). IR spectrum: $\nu_{\rm NH_2}$ 3512, 3406; $\delta_{\rm NH_2}$ 1625; $\nu_{\rm C=O}$ 1680 cm⁻¹.

4-Aminothieno [2,3-d] pyrimidine derivatives IIIb-d (Table 2) were similarly obtained.

2-Acetamido-2-cyano-3-carboxy-5-methylthiophene (IV). A 0.52 g (0.002 mole) sample of Ia was refluxed in a mixture of 5 ml of concentrated hydrochloric acid and 5 ml of glacial acetic acid for 4 h. The mixture was then cooled to room temperature and worked up to give 0.24 g (50%) of a white precipitate of IV with mp 324° (from dioxane). IR spectrum: 2220 ($C \equiv N$), 1720 cm⁻¹ (COOH). Found, %: C 48.1, 48.0; H 3.7, 3.5; N 12.3, 12.5; S 14.0, 14.1. $C_9H_8N_2O_8S$. Calculated, %: C 48.2; H 3.6; N 12.5; S 14.3.

4-Amino-5-carboxy-6-methylthieno [2,3-d]pyrimidine (V). A 0.4 g (0.014 mole) sample of IIIa was refluxed in alcoholic potassium hydroxide solution for 4 h. The reaction mixture was treated with hydrochloric acid until it was weakly acidic, and the mixture was filtered to give 0.075 g (26%) of V with mp 333° (from dioxane). Found, %: C 46.2, 45.9; H 3.2, 3.1; N 20.0, 19.7; S 15.3, 15.4. $C_8H_7N_3O_2S$. Calculated, %: C 46.0; H 3.4; N 20.2; S 15.4. IR spectrum: a number of absorption bands at 3200-3500 cm⁻¹; δ_{NH_2} 1630 cm⁻¹; ν_{COOH} 1720 cm⁻¹.

LITERATURE CITED

- 1. K. Gewald, E. Schinke, and H. Bötteher, Ber., 99, 94 (1966).
- 2. E.C. Taylor and I.E. Berger, Angew. Chem., 78, 144 (1966).
- 3. U. Basu, J. Indian Chem. Soc., 7, 815 (1930).
- 4. A. R. Katritzky and A. P. Ambler, in: Physical Methods in Heterocyclic Chemistry, Chap. 10, Academic (1963).
- 5. K. Nakanishi, Infrared Spectra and Structure of Organic Compounds [Russian translation], Mir, Moscow (1965).
- 6. E.C. Taylor and A. Abul-Husn, J. Org. Chem., 31, 342 (1966).
- 7. E.C. Taylor, A. McKillop, and R. V. Pavindrathan, Angew. Chem., 78, 332 (1966).
- 8. Yu. A. Sharanin, Dissertation [in Russian], Leningrad (1967).